Foundations of Finance Theory, Exam January, 2006

Answer all questions

question 1 (25 points)
question 2 (35 points)
question 3 (25 points)
question 4 (15 points)

1. (25 marks)
(a) Assume that the forward price can be written as

$$
F_{j}=E\left[\phi\left(x_{m}\right) x_{j}\right] .
$$

Explain why this can be written as

$$
F_{j}=E\left(x_{j}\right)+\operatorname{cov}\left[\phi\left(x_{m}\right), x_{j}\right],
$$

(b) Explain when and why the forward price may be written as

$$
F_{j}=E\left(x_{j}\right)-\kappa \operatorname{cov}\left(x_{j}, x_{m}\right)
$$

where κ is a constant.
(c) Explain why κ in b) may be expressed as

$$
\kappa=\frac{E\left(x_{m}\right)-F_{m}}{\operatorname{var}\left(x_{m}\right)}
$$

(d) Given the model above, give an expression for the rate of return

$$
\frac{E\left(x_{j}\right)-F_{j}}{F_{j}}
$$

(e) Assuming the following data: $r_{f}=5 \%, \beta_{j}=1.3, E\left(r_{m}\right)=8 \%$, compute the cost of capital for company j
2. (35 marks)
(a) Assume that the forward price of an option is given by

$$
F\left[g\left(x_{j}\right)\right]=E\left[g\left(x_{j}\right) \phi\left(x_{m}\right)\right] .
$$

Explain why this can be re-written as

$$
F\left[g\left(x_{j}\right)\right]=E\left[g\left(x_{j}\right) \psi\left(x_{j}\right)\right]
$$

and give an expression for $\psi\left(x_{j}\right)$.
(b) What is $E\left[\psi\left(x_{j}\right)\right]$ and why is it this value?
(c) Assume that $\psi\left(x_{j}\right)$ has constant elasticity and hence can be written as

$$
\psi\left(x_{j}\right)=\alpha x_{j}^{\beta}
$$

Also, assume that x_{j} is lognormal. Give an expression for $\psi\left(x_{j}\right)$.
(d) Given $\psi\left(x_{j}\right)$, state the risk-adjusted probability density of x_{j}
(e) Assuming that x_{j} and $\psi\left(x_{j}\right)$ are joint-lognormal what is the forward price of x_{j} ?
(f) Using the forward price, F_{j}, give an expression for the forward price of a call option which is a risk-neutral valuation relationship.
(g) State the Black model for the forward price of a call option on x_{j}
(h) For a stock which pays a known dividend D_{t+T} at time $t+T$, give the spot-forward parity relationship.
(i) Give the formula for the value of a call option on such a stock in h) above
3. (25 marks)
(a) From Cox, Ingersoll and Ross (1981), the futures price of x_{t+2} is the value of a contract paying what, at $t+2$?
(b) The futures price is given by

$$
H_{t, t+2}=E_{t}\left(x_{t+2}\right),
$$

State whether this is True or False
(c) For futures and forwards on bonds and interest rates
i. Forward price $>$ futures price
ii. Forward rate $>$ futures rate
iii. Forward price $=$ futures price

Choose one of the following options:
a) i. is correct
b) ii. is correct
c) iii. is correct
d) i. and ii. are correct
f) ii. and iii. are correct
(d) For this question, assume that x_{t+T}, b_{t+T}, and ϕ_{t+T} are lognormal variables. Let $\operatorname{cov}(\ln x, \ln b)=0.1$. What is $H_{t, t+T} / F_{t, t+T}$?
(e) Assume that interest rates follow a one-factor model and the futures and forward rates are defined by

$$
H_{t, t+T}=e^{-h_{t, t+T}}
$$

and

$$
F_{t, t+T}=e^{-f_{t, t+T}}
$$

respectively. Let the covariance between the 4 -year bond and the discount factor be

$$
\sigma_{x b}=\frac{4(4-1)}{2}(0.01)^{2} .
$$

Compute the forward rate assuming that the futures rate is 5.5%.
4. (15 marks)

Let $\phi_{t, t+1}=q_{i} / p_{i}, \phi_{t, t+2}=q_{k} / p_{k}, \phi_{t+1, t+2}=q_{i, k} / p_{i, k}$.
Which of the following statements are true and which are false. In each case give a brief explanation of your answer.
In a complete market:
(a)

$$
\phi_{t, t+2}=\phi_{t, t+1} \phi_{t+1, t+2}
$$

(b)

$$
S_{j, t}=B_{t, t+1} E_{t}\left(\phi_{t, t+1} S_{j, t+1}\right)
$$

(c)

$$
S_{j, t}=B_{t, t+1}\left[E_{t}\left(S_{j, t+1}\right)+\lambda \operatorname{cov}\left(S_{j, t+1}, S_{m, t+1}\right)\right]
$$

