Foundations of Finance Theory, Exam January, 2006

Answer all questions

question 1 (25 points)

question 2 (35 points)

question 3 (25 points)

question 4 (15 points)

Foundations of Finance Theory, Exam January, 2006

1

- 1. (25 marks)
 - (a) Assume that the forward price can be written as

$$F_j = E\left[\phi(x_m) \ x_j\right].$$

Explain why this can be written as

$$F_{i} = E(x_{i}) + cov \left[\phi(x_{m}), x_{i}\right],$$

(b) Explain when and why the forward price may be written as

$$F_{i} = E(x_{i}) - \kappa cov(x_{i}, x_{m}),$$

where κ is a constant.

(c) Explain why κ in b) may be expressed as

$$\kappa = \frac{E(x_m) - F_m}{var(x_m)},$$

(d) Given the model above, give an expression for the rate of return

$$\frac{E(x_j) - F_j}{F_j}$$

(e) Assuming the following data: $r_f = 5\%$, $\beta_j = 1.3$, $E(r_m) = 8\%$, compute the cost of capital for company j

- 2. (35 marks)
 - (a) Assume that the forward price of an option is given by

$$F[g(x_i)] = E[g(x_i)\phi(x_m)].$$

Explain why this can be re-written as

$$F[g(x_i)] = E[g(x_i)\psi(x_i)]$$

and give an expression for $\psi(x_j)$.

- (b) What is $E[\psi(x_i)]$ and why is it this value?
- (c) Assume that $\psi(x_j)$ has constant elasticity and hence can be written as

$$\psi(x_j) = \alpha x_j^{\beta}$$

Also, assume that x_j is lognormal. Give an expression for $\psi(x_j)$.

- (d) Given $\psi(x_j)$, state the risk-adjusted probability density of x_j
- (e) Assuming that x_j and $\psi(x_j)$ are joint-lognormal what is the forward price of x_j ?
- (f) Using the forward price, F_j , give an expression for the forward price of a call option which is a risk-neutral valuation relationship.
- (g) State the Black model for the forward price of a call option on x_j
- (h) For a stock which pays a known dividend D_{t+T} at time t+T, give the spot-forward parity relationship.
- (i) Give the formula for the value of a call option on such a stock in h) above

- 3. (25 marks)
 - (a) From Cox, Ingersoll and Ross (1981), the futures price of x_{t+2} is the value of a contract paying what, at t+2?
 - (b) The futures price is given by

$$H_{t,t+2} = E_t(x_{t+2}),$$

State whether this is True or False

- (c) For futures and forwards on bonds and interest rates
 - i. Forward price > futures price
 - ii. Forward rate > futures rate
 - iii. Forward price = futures price

Choose one of the following options:

- a) i. is correct
- b) ii. is correct
- c) iii. is correct
- d) i. and ii. are correct
- f) ii. and iii. are correct
- (d) For this question, assume that x_{t+T} , b_{t+T} , and ϕ_{t+T} are lognormal variables. Let $cov(\ln x, \ln b) = 0.1$. What is $H_{t,t+T}/F_{t,t+T}$?
- (e) Assume that interest rates follow a one-factor model and the futures and forward rates are defined by

$$H_{t,t+T} = e^{-h_{t,t+T}}$$

and

$$F_{t,t+T} = e^{-f_{t,t+T}}$$

respectively. Let the covariance between the 4-year bond and the discount factor be

$$\sigma_{xb} = \frac{4(4-1)}{2}(0.01)^2.$$

Compute the forward rate assuming that the futures rate is 5.5%.

4. (15 marks)

Let
$$\phi_{t,t+1} = q_i/p_i$$
, $\phi_{t,t+2} = q_k/p_k$, $\phi_{t+1,t+2} = q_{i,k}/p_{i,k}$.

Which of the following statements are true and which are false. In each case give a brief explanation of your answer.

In a complete market:

(a)

$$\phi_{t,t+2} = \phi_{t,t+1}\phi_{t+1,t+2}$$

(b)

$$S_{j,t} = B_{t,t+1} E_t(\phi_{t,t+1} S_{j,t+1})$$

(c)

$$S_{j,t} = B_{t,t+1}[E_t(S_{j,t+1}) + \lambda cov(S_{j,t+1}, S_{m,t+1})]$$